LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 15

SECTIO A

1982/1983

Département de Mathématiques et de Statistique
Université de Montréal
Montréal, Québec, Canada

O. I. RAHMAN

An Inequality for Asymmetric Entire Functions

Nierówność dla funkcji całkowitych asymetrycznych

Неравенство для ассиметрических целых функций

It is a simple consequence of the maximum principle (see [5], p. 346 or [4], p. 158, problem III 269) that if $p_n(z)$ is a polynomial of degree n, then

$$\max_{|z|=R > 1} |p_n(z)| \le R^n \max_{|z|=1} |p_n(z)|, \tag{1}$$

or equivalently

$$\max_{|z|=\rho < 1} |p_n(z)| \le \rho^n \max_{|z|=1} |p_n(z)|. \tag{2}$$

More precise estimates can be made if $p_n(z)$ has no zeros in |z| < 1. In fact, if $p_n(z) \neq 0$ in |z| < 1, then [1]

$$\max_{|z| = R > 1} |p_n(z)| \le \frac{1}{2} (R^n + 1) \max_{|z| = 1} |p_n(z)|, \tag{3}$$

whereas [6]

$$\max_{|z|=\rho < 1} |p_n(z)| \ge \left(\frac{1+\rho}{2}\right) \max_{|z|=1} |p_n(z)|. \tag{4}$$

Since $p_n(e^{iz})$ is an entire function of exponential type these inequalities suggest generalizations to such functions. It is indeed well known that if f(z) is an entire

function of exponential type τ with $|f(x)| < \infty$ on the real axis, then for all real y (see [2], p. 82)

$$\sup_{-\infty < x < \infty} |f(x+iy)| \le e^{\tau \lceil y \rceil} \sup_{-\infty < x < \infty} |f(x)|, \tag{1'}$$

or equivalently

$$\sup_{-\infty < x < \infty} |f(x+iy)| \ge e^{-\tau |y|} \sup_{-\infty < x < \infty} |f(x)|. \tag{2'}$$

These two latter inequalities are generalizations of (1) and (2) respectively. If $p_n(z) \neq 0$ in |z| < 1, then $f(z) := p_n(e^{iz})$ has no zeros in y > 0. Besides, if

If
$$p_n(z) \neq 0$$
 in $|z| < 1$, then $f(z) := p_n(e^{-z})$ has no zeros in $y > 0$. Besides, if

$$h_f(\theta) := \limsup_{r \to \infty} r^{-1} \log |f(re^{i\theta})|$$

is its indicator function (see [2], Chapter 5) then $h_f(\pi/2) = 0$. Accordingly, Boas considered the family \mathcal{F}_{τ} of entire functions f of exponential type τ with $|f(x)| < \infty$ for real x, $f(z) \neq 0$ for y > 0 and $h_f(\pi/2) = 0$. He generalized (3) to entire functions of exponential type by proving [3] that if $f \in \mathcal{F}_{\tau}$ then for y < 0,

$$\sup_{-\infty < x < \infty} |f(x+iy)| \le \frac{1}{2} (e^{\tau |y|} + 1) \quad \sup_{-\infty < x < \infty} |f(x)|. \tag{3'}$$

In view of this result one might think that (4) would admit an extension of the form

$$\max_{-\infty < x < \infty} |f(x+ly)| \ge (\frac{1+e^{-y}}{2})^{\frac{y}{2}} - \sup_{-\infty < x < \infty} |f(x)| \text{ for } y > 0 \text{ and } f \in \mathcal{F}_{\tau}.$$
 (4°)

It turns out that (4°) does not hold for all $f \in \mathcal{F}_{\tau}$. For an arbitrary $\tau > 0$ let $f_T(z) := (\frac{1 + e^{iz/T}}{2})^{\tau T}$

where T is a positive number such that $\tau T \in \mathbb{N}$. Clearly, $f_T \in \mathcal{F}$ and

$$\sup_{-\infty} |f_T(x)| = 1.$$

Besides, for fixed y

$$|f_T(x+iy)| \le \left(\frac{1+e^{-y/T}}{2}\right)^{\tau T} \longrightarrow e^{-(\tau/2)y} \text{ as } T \to \infty$$
,

i.e. (4°) cannot hold for f_T if T is large (and, of course, $T \in \mathbb{N}$). However, instead of (4°) we do have

Theorem 1 A. If $f \in \mathcal{F}_r$, then for y > 0

$$\sup_{-\infty} |f(x+iy)| \ge e^{-(\pi/2)y} \sup_{-\infty} |f(x)|. \tag{4'}$$

The above example shows that (4') is best possible.

Proof of Theorem 1A. We shall prove that if $f \in \mathcal{F}_{\tau}$ then for y > 0 and all $x \in \mathbb{R}$

$$|f(x+iy)| \ge |f(x)|e^{-(\pi 2)y}$$
, (5)

from which (4') would follow immediately.

Case (i). If f is of order < 1 then it must be a constant since otherwise |f(x)| cannot be bounded on the real axis (see [2], pp. 82–83). Hence (5) is trivially true in this case.

Case (ii). Let f be of order 1 type $t \le \tau$. Since $h_f(\pi/2) = 0$ and |f(x)| is bounded on the real axis $h_f(-\pi/2)$ is necessarily equal to t. Let y_0 be an arbitrary but fixed positive number and put

$$g(z) := f(z + \frac{1}{2}iy_0) \exp \left\{-i(t/2)(z + \frac{1}{2}iy_0)\right\}.$$

Then g is of exponential type t/2; moreover the indicator h_g of g satisfies $h_g(-\pi/2) = h_g(\pi/2)$. Since $g(z) \neq 0$ for $y > -\frac{1}{2}y_0$ and a fortiori for y > 0, by a theorem of B. Ya. Levin (see [2], p. 129) we have $|g(z)| \geq |g(\overline{z})|$ for Im z > 0. In particular $|g(x + \frac{1}{2}iy_0)| \geq |g(x - \frac{1}{2}iy_0)|$, or equivalently

$$|f(x+iy_0)| \ge |f(x)| e^{-(i/2)y_0} \ge |f(x)| e^{-(\pi/2)y_0}$$
 (6)

which is what we wanted to prove.

As an immediate consequence of Theorem 1 A, we have

Corollary 1. Let $\hat{f}(z)$ be an entire function of exponential type τ such that

(i)
$$\sup_{-\infty} |f(x)| \le 1$$
,

(ii)
$$h_f(\pi/2) = 0$$
,

and

(iii)
$$f(z) \neq 0$$

for y > -k where k is some positive number. Then for 0 > y > -k,

$$|f(x+iy)| \le e^{(\tau/2)|y|}$$
 (7)

We can, in fact, prove

Theorem 2. If f(z) is an entire function of exponential type τ satisfying the conditions of Corollary 1, then (7) holds for $0 > y \ge -2k$.

Proof of Theorem 2. It only remains to prove that (3) holds for $-k > y \ge -2k$. Again, the result is trivial if f(z) is of order < 1. If f(z) is of order 1 type $t \le \tau$ then we may apply the theorem of Levin (loc. cit.) to

$$G(z) := f(z-ik) \exp \left\{-t(t/2)(z-ik)\right\}$$

to deduce that

$$|G(z)| \le |G(\overline{z})|$$
 for $\text{Im } z < 0$.

Thus, for $\delta > 0$

$$|f(x-i(k+\delta))| e^{-(t/2)^{\delta}(k+\delta)} = |G(x-i\delta)| \le |G(x+i\delta)| = |f(x-i(k-\delta))e^{-(t/2)(k-\delta)},$$

....

$$|f(x-i(k+\delta))| \leq |f(x-i(k-\delta))| e^{i\delta}.$$

In particular, if $0 < \delta \le k$, then from (7) we obtain

$$|f(x-t(k+\delta))| \le |f(x)| e^{(t/2)(k-\delta)}e^{t\delta} = |f(x)| e^{(t/2)(k+\delta)}$$

from which the desired result follows.

For all T > 0 such that $\tau T \in \mathbb{N}$ the function

$$f_{k, T}(z) := \left(\frac{1 + e^{i(z + ik)/T}}{1 + e^{-k/T}}\right)^{\tau T}$$

satisfies the conditions of Corollary 1, whereas

$$f_{k, T}(iy) = \left(\frac{1 + e^{-(y+k)/T}}{1 + e^{-k/T}}\right)^{\tau T} \longrightarrow e^{-(\tau/2)y} \text{ as } T \to \infty$$

Hence inequality (7) is best possible for all $y \in [-2k, 0)$. The example

$$f(z):=\left(e^{l\tau z}+e^{\dagger k}\right)/\left(1+e^{\tau k}\right)$$

shows that for a function satisfying the conditions of Corollary 1 inequality (7) may not hold for y < -2k.

From Theorem 2 we readily deduce the following generalized version of Theorem 1 A.

Theorem 1. Let f(z) be an entire function of exponential type τ such that

(i)
$$\sup_{-\infty < x < \infty} |f(x)| = 1,$$

(ii)
$$h_f(\pi/2) = 0$$
,

and

(iii)
$$f(z) \neq 0$$

for y > k > 0. Then for y > 2k,

$$\sup_{-\infty} |f(x+iy)| \ge e^{-(\pi/2)y}. \tag{8}$$

Inequality (8) is best possible for all $y \ge 2k$ and may not hold for y < 2k.

REFERENCES

- [1] Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacyfic J. Math. 5 (1955), 849-852.
- [2] Boas, R. P., Jr., Entire Functions, Academic Press, New York 1954.
- [3] Boas, R.P., Jr., Inequalities for asymmetric entire functions, Illinois J. Math. 1 (1957), 94-97.
- [4] Polya, G., Szegö, G., Problems and Theorems in Analysis, Vol. I. Springer-Verlag Berlin Heidelberg 1972.
- [5] Riesz, M., Über einen Satz des Herrn Serge Berstein, Acta Math. 40 (1916), 337-347.
- [6] Rivlin, T. J., On the maximum modulus of polynomials, Amer. Math. Monthly 67 (1960), 251-253.

STRESZCZENIE

Rozważa się problem znalezienia najlepszego oszacowania od dołu wyrażenia

$$\sup_{-\infty < x < +\infty} |f(x + ly)|, y > 0$$

w klasie funkcji całkowitych danego typu wykładniczego.

PE3IOME

Рассматрывается проблема отыскания найлучшей оценки снизу выражения

$$\sup_{-\infty < x < +\infty} |f(x+ly)|, y > 0$$

в класов целых функций даного экспоненциального типа.